VI-9i, the most accurate VI yet

Introducing the latest addition to Konica Minolta’s VI Series.

Featuring improved accuracy and usability and flexibility. Offering unprecedented value.

It’s the most advanced model for industrial applications from reverse engineering to design verification and dimensional inspection.

The essentials of imaging
Introducing the VI-9i non-contact 3D digitizer. This innovative device is ideal for reverse engineering, design verification, quality inspection, and other industrial applications.

The VI-9i non-contact 3D digitizer provides high-speed and high-accuracy 3D measurement of dies, cast and forged products, and stamped and plastic-molded products. The 9i excels at shape evaluation, tool and die qualification, and quality inspection during prototype creation and the during the production processes. The 9i is an ideal way to capture the shape and dimensional data of design models and prototypes in design drawings for reverse engineering purposes.

When used for reverse engineering or CAE, the VI-9i easily and accurately converts the shape of a product into 3D digital data. Using the VI-9i for inspection or CAT contributes to the early detection of shape problems, provides rapid feedback on design, and eliminates unnecessary work in downstream processes. As a result, it accelerates the entire manufacturing process.

Smooth input and output of 3D digital data are essential to increasing work efficiency during the design, manufacturing, and inspection processes. By introducing the VI-9i, Konica Minolta has accelerated the revolution in manufacturing - a sector committed to the use of digital processing tools such as CAD, CAM, and CAE, to higher-quality shape input and process output, and to reduced throughput time. That's why we're promoting "Digital Process Re-engineering," with the goal of improved efficiency, and ultimately of enhanced customer satisfaction.
Measurement Flow of VI-9i

(Polygon Editing Tool)

Measure targets of any size.
Konica Minolta employed its expertise in optical engineering to develop interchangeable high-performance, dedicated lenses. As a result, TELE, MIDDLE and WIDE lenses can be selected to accommodate the size of the measurement target.
(Input range in X, Y and Z directions: 93 x 69 x 26 mm to 1495 x 1121 x 1750 mm)

Point & Shoot, Leave detailed settings to the 9i.
Konica Minolta’s AF/AE technology, developed through its expertise in camera manufacturing, relieves users from the need to determine the exact measuring distance. Moreover, the system automatically determines the optimum laser power for the surface conditions of the target.
(Scan Range: standard mode 0.6 to 1.0 m, Extended mode 0.5 to 2.5 m)

1. Scanning the target with a laser beam
Take a measurement with the software, Polygon Editing Tool.

High speed and high accuracy
Start the measurement by framing the scan area on the LCD Viewfinder of the VI-9i unit or on the host computer’s display. Each scan requires only 2.5 seconds to acquire accurate 3D data.

Standards-Traceable performance
Konica Minolta supports compliance with ISO 9000. Manufacturers using VI-9i for QC applications can receive test reports of the accuracy of each 9i, traceable to national standards. Thereby ensuring that our measuring instruments and your process conform to ISO 9000 requirements.

*On request, Konica Minolta can provide a test report for each 9i unit. This test report is created by evaluating the measurement accuracy for all 3 lenses of each 9i using our Reference 3D Chart, an artifact traceable to national standards, and thus can be used as documentation for conformance with ISO requirements.

2. Merging and editing of 3D data
Quick, easy editing
Missed a spot? You’ll see it immediately and be able to scan any voids. You can check the measured 3D data in real time on the preview screen. This allows for sequential framing, measurement, and alignment of the data. Thanks to the improved processing speed and the new graphical user interface specifically developed for the VI-9i, even large amounts of measurement data can be merged, edited and converted into general 3D data format with greater speed and ease. Merging of data can be accomplished by just clicking on a single pair of points. There is no need to attach markers, etc. before measurements.

What’s more, our new field calibration system maintains the high reliability of the factory settings by canceling the degraded accuracy caused by lens exchange or a change in environment.
The non-contact 3D digitizer VI-9i offers improved accuracy and ease of use.

High speed, high precision, and Measurement accuracy of ±50mm

The VI-9i requires only 2.5 seconds per scan to acquire accurate 3D data. Consequently, the VI-9i is ideal for accuracy verification and shape inspection of cast, forged, and pressed automotive parts and plastic-molded automotive parts. Give us your part, and we'll prove it to you.

The new Field Calibration system negates inaccuracies caused by lens exchange or environmental changes. A simple calibration procedure before use assures the optimal performance from the 9i.

<Measurement principle>

The VI-9i is based on the principal of laser triangulation. A target is scanned with laser stripes. The CCD camera receives the light reflected from the surface of the subject. Surface shape measurements of the subject are obtained through triangulation, and converted into a 3D polygon mesh. The VI-9i measures 640 x 480 points with one scan, simultaneously acquiring surface shape data and color image data.

VI-9i System configuration

(Polygon Editing Tool)

* Photo shows example setup of VI-9i and laptop computer (commercial product).

<VI-9i Main standard accessories>

1. Interchangeable Lenses (TELE, MIDDLE, WIDE)
2. Field Calibration System
 - Polygon editing software "Polygon Editing Tool"
 - SCSI Cable

<Optional accessories>

4. Measurement Stand Set
 - Tripod Set
4. Rotating Stage Set

* Shape varies with sales region.

Major applications

- Automotive/motorcycle manufacturers and parts maker
 - Dimensional inspection of cast/forged parts. Checking of the margin remaining for secondary processing
 - Accuracy inspection, parts inspection, interference check with mechanical parts, die verification of press- or plastic-molded products
 - Inspection/analysis of car seats, tires, and cushioning materials
 - Reverse engineering using actual objects, mock-ups, and scale models of car seats, headrests or wheels

- Companies in heavy industry, iron/steel or heavy equipment manufacturers
 - Inspection of turbine blades, steel pipes and steel plates. Design of heavy equipment

- Other manufacturers
 - Inspection or reverse engineering of interior/exterior wall materials and modular bath units
 - Inspection of train rail wear, tanks at hydroelectric power plants, and turbine blades

For other applications, visit our website below
Example of procedure for CAD data creation — Creation of a CAD Model of an automotive aluminum casting —

Measured data (polygon)
- Engine valve cover
 Measurement, alignment, merging, hole filling, and cleaning

Creating curves
- Manual curve creation
 - Unnecessary when the automatic surface creation function is used

Creating NURBS
- Creates a NURBS patch matching the curve boundaries

High-continuity surface data
- Example of continuous surface evaluation using environment mapping

Trimmed NURBS surfaces
- Creates geometrically shaped surfaces such as cones and planes. Trim the data with these surfaces.

Example of CAT work procedure — Comparison inspection between measured data and CAD data —

Scanning the sample

Measured data (polygon)
- Measurement, alignment, merging, and cleaning

Importing CAD data

Color map calculation
- Comparison between CAD data and measured data
 - Color map display providing size and gage indication of data. within the tolerance range is green; data outside is red.

Alignment with CAD data

Example of inspection evaluation report — Comparison between reference CAD (NURBS) data and measured data —

Evaluation at cross section
- Early detection of shape problems

Cross section/Grid display/Diagram dimensions/Errors at specific points

Instrument panel

Bumper

Digital Process Re-engineering
Konica Minolta Sensing, Inc.
3-91, Daisennishimachi, Sakaiku, Sakai, Osaka 590-8551, Japan
Konica Minolta Sensing Europe B.V.
European Headquarter, Edisonbanaan 14-E, 3439 MN Nieuwegein, The Netherlands
Phone: +31(0)30 248-1193 Fax: +31(0)30 248-1280
www.konicaminolta.eu

Specifications of VI-9i

Type	Non-contact 3D digitizer
Measuring Method	Triangulation light block method
Light-Receiving Lenses (Interchangeable)	TELE: Focal distance f=25 mm, MIDDLE: Focal distance f=14 mm, WIDE: Focal distance f=8 mm
Scan Range	0.6 to 1.0 m (in Standard mode), 0.5 to 2.5 m (in Extended mode)
Laser Scan Method	Galvano-mirror driven rotating mirror
Laser Class	Class 2 (I/208351-1, Class 1 PDA)
X Direction Input Range (in Extended mode)	TELE: 93 to 463 mm, MIDDLE: 165 to 823 mm, WIDE: 299 to 1495 mm
Y Direction Input Range (in Extended mode)	TELE: 69 to 347 mm, MIDDLE: 124 to 618 mm, WIDE: 224 to 1121 mm
Z Direction Input Range (in Extended mode)	TELE: 26 to 660 mm, MIDDLE: 42 to 1100 mm, WIDE: 66 to 1750 mm
Accuracy (X, Y, Z)	≤±0.05 mm (Using TELE lens) at distance of 0.6 m, with Field Calibration System, Konica Minolta’s standard, at 20°C
Precision (Z, etc)	0.008 mm (Using TELE lens) at distance of 0.6 m, Konica Minolta’s standard, at 20°C
Input Time (per scan)	Approx. 1.5 sec
Transfer Time to Host Computer	Approx. 2.5 sec
Imaging Element	Office environment, 500 Ix or less
Number of Output Pixels	3D data: 1/3-inch frame transfer CCD (440,000 pixels)
Output Format	Color data: Common with 3D data (color separation by rotary filter)
Data File Size	3D data: 640 x 480 (640 x 460 in the HIGH QUALITY mode)
Weight	Color data: 640 x 480
Operating temperature/humidity range	10°C to 40°C, relative humidity 65% or less with no condensation
Storage temperature/humidity range	0°C to 60°C, relative humidity 95% or less at 35°C with no condensation
Regulatory approvals	UL 61010-1, CSA-C22.2 No. 1010-I, etc.

*1 Contains Mercury in the backlighting of LCD used for display, Dispose According to Local, State or Federal Laws.
*2 Operating temperature/humidity range of products for North America :10 to 40°C, relative humidity 50% or less (at 40°C) with no condensation

Specifications of Polygon Editing Tool

| <Main Features> | Konica Minolta proprietary formats: CAM, VWD, SCN, CDK, CDK
| Readable Formats | General format: STL
| Data Conversion | Conversion from Konica Minolta proprietary formats into general format
| Polyhedral data: DXF, Wavefront, Softimage, VRML, 2.0, STL, MGF
| Power | Commercial AC power, 100 to 240 V (50/60Hz), rated current 0.6 A (at 100 VAC)
| Dimensions | 221 (W) x 412 (H) x 282 (D) mm
| Weight | Approx. 15 kg (with lens attached)
| Operating temperature/humidity range | 10°C to 40°C, relative humidity 65% or less with no condensation
| Storage temperature/humidity range | 0°C to 60°C, relative humidity 95% or less at 35°C with no condensation
| Regulatory approvals | UL 61010-1, CSA-C22.2 No. 1010-I, etc.
| <Operating Environment> | Windows® XP/Windows® Vista OS
| PC/AT compatible | Windows® XP Professional SP2, x64 Edition
| CPU | Pentium 4 or better
| RAM | 1024 MB (2048 MB recommended)
| Display | Graphic display ability at 1024 x 768 or more
| Graphics Board | OpenGL-ready board
| (verified-compatible board recommended) | SCSI Interface | Adaptec SCSI-3
| (Please use a verified compatible board) | Others | CD-ROM drive, USB port

For further information regarding graphics board and SCSI Interface, please contact the VI Salesperson in your area.

SAFETY PRECAUTIONS

Read all safety and operating instructions before operating the VI.

Use only a power source of the specified rating.

Improper connection may cause a fire or electric shock.

Do not stare into the laser beam. (MAX: 300mW 690nm / CLASS 1 (FDA), CLASS 2 (IEC) LASER PRODUCT)

Konica Minolta Sensing, Inc.
3-91, Daisennishimachi, Sakaiku, Sakai, Osaka 590-8551, Japan
Konica Minolta Sensing Europe B.V.
European Headquarter, Edisonbanaan 14-E, 3439 MN Nieuwegein, The Netherlands
German Branch Office, Werner-Eckert-Straße 2, 81829 München, Germany
France Branch Office, ZI Paris Nord II - 305, rue de la Belle Etolée, 95940 ROISSY CDG Cedex, France
UK Branch Office, Suite 8, 500 Avebury Boulevard, Central Milton Keynes, MK9 2BE, United Kingdom
Italy Branch Office, Via Giovanni Gentile, 7, 20157 Milano, Italy
Phone: +31(0)30 248-1193 Fax: +31(0)30 248-1280
Phone: +49(0)89 4375 156 0 Fax: +49(0)89 4375 156 99
Phone: +33(0)1 493-82519 Fax: +33(0)1 493-84771
Phone: +44(0)1908 540-622 Fax: +44(0)1908 540-629
Phone: +39 02 39011.425 Fax: +39 02 39011.223
Phone: +39 02 39011.425 Fax: +39 02 39011.223

©2004 KONICA MINOLTA SENSING, INC.
9242-4892-21 ALDK Print in Japan